

1 PRE ALIGNMENT: CHECK RUN OUT

- 1. Mount the dial indicator to the magnetic base.
- 2. Affix the magnetic base to the machine base, a bearing housing, or any fixed point in space.
- 3. Adjust the indicator so that it contacts the shaft or hub you intend to measure.
- 4. Slowly rotate the shaft that you're measuring until the dial reaches a maximum or minimum.
- 5. Set the dial indicator to zero.
- 6. Rotate the shaft until the dial gauge reaches a maximum or a minimum reading.
- 7. This is the amount of run out.

2 PRE ALIGNMENT: ROUGH ALIGN

- 1. Rough align the machine vertically using a scale.
- 2. Rough align the machine horizontally using a scale.

B PRE ALIGNMENT: OBVIOUS SOFT FOOT

- 1. Loosen <u>all</u> of the mounting bolts.
- 2. Find any loose shim packs.
- 3. Correct the loose shim packs by adding shims.

4 PRE ALIGNMENT: TORQUE THE BOLTS

- 1. Determine your desired tightening sequence.
- 2. Make the first pass. Torque each bolt in the established sequence to 50% of the desire torque.
- 3. Make the second pass. Torque each bolt in the established sequence to 100% of the desire torque.

5 PRE ALIGNMENT: FINAL SOFT FOOT

- 1. Loosen one bolt at a time.
- 2. Use a 2 mil (.002") shim or feeler gauge to check the gap under the foot.
- 3. Correct any foot with more than two mils of softness.
- 4. Re-tighten the bolt.

6 SET UP THE SHAFT HOG

- 1. Mount the stationary sensor on the stationary shaft.
 - + The sensors may be mounted on the shafts or on the coupling hubs.
 - \oplus Place the chain nut in the bracket cradle.
 - Place the bracket on the shaft and pull the chain under the shaft and hook it over the pin.
 - \oplus Hand tighten the nut, then $\frac{1}{2}$ turn more with the wrench.
- 2. Mount the movable sensor on the movable shaft.

- 4. Plug the cables into the display unit be sure to locate the proper connection (M to M, S to S).
- 5. Turn the unit on.
- 6. Rotate the sensors to 12:00.
- 7. Aim the lasers.
 - \oplus The sensors will be on different elevations.
 - + Use the thumbwheels to aim the lasers to the center of the target.
 - Twist the sensors on the post to make the lines equally spread on both sides of the target.

www.newmantools.com tel 1-800-465-1384 fax 1-800-605-2442

ENTER DIMENSIONS

- 1. Measure the "A" dimension. + Center of post to center of post.
- 2. Enter the "A" dimension into the display box.
 - \oplus The + symbol will increase the value on the screen.
 - \oplus The symbol will decrease the value.
 - \oplus Holding the + or button will change the values quickly.
- 3. Press the right arrow to advance to the "B" dimension.
- 4. Measure the "B" Dimension.
 - \oplus The line parallel to the shaft from the center of the moveable sensor post to center of front foot.
- 5. Enter the "B" dimension into the display box.
 - \oplus The + symbol will increase the value on the screen.
 - + The symbol will decrease the value.
- 6. Press the right arrow to advance to the "C" dimension.
- 7. Measure the "C" Dimension. \oplus Front feet to rear feet.
- 8. Enter the "C" dimension into the display box.
 - \oplus The + symbol will increase the value on the screen.
 - \oplus The symbol will decrease the value.
- 9. Press the right arrow to advance to measurement screen.

- \oplus The sensors can be at **ANY** clock position to start.
- \oplus The starting measurement is registered by pressing the right arrow.
- \oplus The sensors are then rotated 180 degrees from the starting point.
- \oplus The right arrow registers the second measurement.
- + The system will thereafter give "live" results in whatever orientation the sensors are pointing.
- \oplus After you get some experience you can try different starting positions.
- \oplus To begin, use the orientation shown below.
- 1. Rotate the sensors to 9:00.
 - \oplus Use the level on one of the sensors.
 - + You should see both "S" and "M" values.
 - \oplus If you do not, then the lasers are not within the target window.
- 2. Press the right arrow to register the measurement.
 - \oplus The values will change to near zero.
 - \oplus The values are being displayed in mils.

"/mils

(Over)

MEASURE MISALIGNMENT (CONTINUED)

3. Rotate the sensors to 3:00.

- \oplus Use the level on one sensor.
- \oplus You should see both "S" and "M" values.
- \oplus If you do not, then the lasers are not within the target window.
- 4. Press the right arrow to register the measurement.
 - + The screen will now display the results.
 - + The values are "live" in whatever orientation the sensors are pointing.
 - + Since the sensors are at 3:00 the live readings displayed are for the horizontal position.
- 5. To see vertical results rotate the sensors to 12:00. + Use the level on one sensor.

, "/mils ⊣∑ 0.2 ⊣⊢ 19.0 F1 - 20.9 F2 - 23.5

Offset

Mils 1.0 = .001

2.0

4.0

6.0

8.0

•		-
Ŏ •	"/mils	
٦Ľ	0.Y	
⊣⊢	6.9	
F1	10.9	
F2	16.3	

"/mils

0.2

6.2

1.8

9.7

"/mils

0.2

ק ב

7.8

9.7

٦Ľ

⊣⊢

F1

F2

__•

٩Ľ

-11-

F1

F2

9 ALIGNMENT RESULTS

- 1. The angle and offset values are **ONLY** used for comparing to the tolerance table.
- 2. If you exceed the tolerance for either you will make a correction.
- 3. The foot values are for making corrections.

F1 are the front feet. F2 are the rear feet. Round to the nearest whole number.

Angularity

.5/1"

.7/1"

1.0/1"

1.5/1"

Mils per inch 1.0/1*

001"/1

CORRECTING	MISALIG	

- 1. To correct vertical misalignment be sure the sensors are at 12:00.
 - \oplus Use the level on one sensor to determine 12:00.
- 2. Record the F1 and F2 values to the nearest mil.

Positive values: the machine is high, remove shims. Negative values: the machine is low, add shims.

1 CORRECTING HORIZONTAL MISALIGNMENT			"/mils
1. To correct horizontal misalignment be sure the sensors are at 3:00.] - <u>;</u>	0.2
 Use the level on one sensor to determine 3:00. Use the F1 and F2 values to adjust the movable machine until the angle and offset are within tolerances. 	Positive values: the machine is away from you, adjust it toward you. Negative values: the machine is toward you adjust it away from you.	- ⊨ F1 - F2 -	0,91 - 27.0 - 23.8

Machine Speed

3600

1800

1200

900

12 RE-MEASURE

10

1. To re-measure press the left arrow until the 9:00 symbol re-appears.

